I understand that the weight of the car specified is intend to be 2.98 x 10^3 kg rather than 2.98 x 10^3 kg, and the problem is solved accordingly.
Given:
Weight of car = m = 2.98 x 10^3 kg
Work done on car = 6.0 kJ = 6000 J
Distance covered by car = s = 29.8 m
The work done on the car has been converted into kinetic energy Which is given by the formula
Kinetic energy of car = 6000 J = (1/2)*m*v^2 =
where v = final speed of car.
Therefore final speed of car = v= [6000*(2/m)]^1/2
= [(2*6000)/(2.98 x 10^3)]^1/2 = 2.0067 m/s
Acceleration of the car is given by the formula:
Acceleration = a = (v^2)/2*s = (2.0067^2)/(2*29.8) = 0.0676 m/s
And force exerted on car = m*a = 2.98 x 10^3)*0.0676 = 201.3422 N
Answer:
Final speed of car = 2.0067 m/s
Horizontal force exerted on car = 201.3422 N
No comments:
Post a Comment