Wednesday, October 21, 2015

If 2*cosx*cos(3x)+1=0, what can x be between 0 and 2pi?

First of all, we'll write 2*cosx*cos(3x) as a sum, following the formula:


cos a+cos b= 2cos [(a+b)/2]cos[(a-b)/2]


So, 2*cosx*cos(3x)= cos a+ cos b


x=(a+b)/2 => a+b=2x


3x=(a-b)/2 => a-b=6x


a+b+a-b=2x+6x


2a=8x => a=4x


a+b-a+b=2x-6x


2b=-4x


b=-2x


Let's substitute now the found values for a and b:


2*cosx*cos(3x)= cos 4x+ cos 2x


The expression given is:


cos 4x+ cos 2x +1=0


Cos 4x= cos 2*(2x)=2[cos(2x)]^2-1


2[cos(2x)]^2-1+cos 2x +1=0


2[cos(2x)]^2+cos 2x =0


cos(2x)*[2cos(2x)+1]=0


cos(2x)=0


2x=arccos 0 + 2kpi


2x=pi/2 + 2kpi


x=pi/4 + kpi


For k=0, x=pi/4=45 degrees(first quadrant)


For k=1, x=pi/4+pi=5pi/4=5*45=225 degrees(third quadrant)


But also, for k=1, x=pi-pi/4=3pi/4=3*45=135 (second quadrant)


2cos(2x)+1=0


2cos(2x)=-1


cos(2x)=(-1/2)


2x=arccos(-1/2)+2kpi


2x=pi/3+2kpi


x=pi/6+kpi


For k=0, x=pi/6=30degrees(first quadrant)


For k=1, x=pi/6+pi=7pi/6=7*30=210 degrees(third quadrant)


For k=1, x=pi-pi/6=5pi/6=5*30=150 degrees(second quadrant)

No comments:

Post a Comment