First of all, we'll write 2*cosx*cos(3x) as a sum, following the formula:
cos a+cos b= 2cos [(a+b)/2]cos[(a-b)/2]
So, 2*cosx*cos(3x)= cos a+ cos b
x=(a+b)/2 => a+b=2x
3x=(a-b)/2 => a-b=6x
a+b+a-b=2x+6x
2a=8x => a=4x
a+b-a+b=2x-6x
2b=-4x
b=-2x
Let's substitute now the found values for a and b:
2*cosx*cos(3x)= cos 4x+ cos 2x
The expression given is:
cos 4x+ cos 2x +1=0
Cos 4x= cos 2*(2x)=2[cos(2x)]^2-1
2[cos(2x)]^2-1+cos 2x +1=0
2[cos(2x)]^2+cos 2x =0
cos(2x)*[2cos(2x)+1]=0
cos(2x)=0
2x=arccos 0 + 2kpi
2x=pi/2 + 2kpi
x=pi/4 + kpi
For k=0, x=pi/4=45 degrees(first quadrant)
For k=1, x=pi/4+pi=5pi/4=5*45=225 degrees(third quadrant)
But also, for k=1, x=pi-pi/4=3pi/4=3*45=135 (second quadrant)
2cos(2x)+1=0
2cos(2x)=-1
cos(2x)=(-1/2)
2x=arccos(-1/2)+2kpi
2x=pi/3+2kpi
x=pi/6+kpi
For k=0, x=pi/6=30degrees(first quadrant)
For k=1, x=pi/6+pi=7pi/6=7*30=210 degrees(third quadrant)
For k=1, x=pi-pi/6=5pi/6=5*30=150 degrees(second quadrant)
No comments:
Post a Comment