Tuesday, October 15, 2013

If cos x * (cos 4x) = sin x * sin (6x), what is x between 0 and 2pi?

Knowing the following formula:


cos a+cos b= 2 cos[(a+b)/2]cos[(a-b)/2] and


cos a - cos b= 2sin [(a+b)/2]sin[(b-a)/2]


Suppose we have:


cos a+cos b= cos x * (cos 4x), but


cos a+cos b= 2 cos[(a+b)/2]cos[(a-b)/2]


From the both identities above, it results that:


cos x * (cos 4x)=2 cos[(a+b)/2]cos[(a-b)/2]


From the principle of an identity it results that:


x=(a+b)/2 => a+b=2x


4x=(a-b)/2 =>a-b=8x


a+b+a-b=2x+8x


2a=10x


a=5x


a+b-a+b=2x-8x


2b=-6x


b=-3x


So, cos 5x+ cos 3x=(1/2)cos x * (cos 4x)


(1/2)(cos 5x+ cos 3x)=cos x * (cos 4x)


sin x * sin (6x)=(1/2)[cos a-cosb]


x=(a+b)/2 => a+b=2x


6x=(b-a)/2 => b-a=12x


a+b+b-a=2x+12x


2b=14x => b=7x


a+b-b+a=2x-12x => 2a=-10x => a=-5x


(1/2)(cos 5x - cos 7x)=(1/2)(sin x * sin (6x))


So, the equivalent of the give identity is:


(1/2)(cos 5x+ cos 3x)=(1/2)(cos 5x - cos 7x)


(cos 5x+ cos 3x)=(cos 5x - cos 7x)


cos 3x=-cos 7x


cos3x+cos7x=0


Now, we'll write the sum as a product, in this way using the properties of a product of 2 factors which is equal to 0.


2cos[(3x+7x)/2]cos[(3x-7x)/2]=0


2cos(5x)cos(2x)=0


cos 5x=0


5x= arccos0+2kpi


5x=pi/2+2kpi


For k=0, x=pi/10, (x=180/10=18 degrees)


For k=1, 5x=2pi-pi/2


5x=3pi/2


x=3pi/10(x=3*18=54 degrees, first quadrant)


cos 2x=0


2x=arccos0 + 2kpi


2x=pi/2+2kpi


For k=0, x=pi/4(x=45 degrees)


For k=1, 2x=2pi-pi/2,


x=pi-pi/4=3pi/4(x=3*45=135, second quadrant)

No comments:

Post a Comment