Knowing the following formula:
cos a+cos b= 2 cos[(a+b)/2]cos[(a-b)/2] and
cos a - cos b= 2sin [(a+b)/2]sin[(b-a)/2]
Suppose we have:
cos a+cos b= cos x * (cos 4x), but
cos a+cos b= 2 cos[(a+b)/2]cos[(a-b)/2]
From the both identities above, it results that:
cos x * (cos 4x)=2 cos[(a+b)/2]cos[(a-b)/2]
From the principle of an identity it results that:
x=(a+b)/2 => a+b=2x
4x=(a-b)/2 =>a-b=8x
a+b+a-b=2x+8x
2a=10x
a=5x
a+b-a+b=2x-8x
2b=-6x
b=-3x
So, cos 5x+ cos 3x=(1/2)cos x * (cos 4x)
(1/2)(cos 5x+ cos 3x)=cos x * (cos 4x)
sin x * sin (6x)=(1/2)[cos a-cosb]
x=(a+b)/2 => a+b=2x
6x=(b-a)/2 => b-a=12x
a+b+b-a=2x+12x
2b=14x => b=7x
a+b-b+a=2x-12x => 2a=-10x => a=-5x
(1/2)(cos 5x - cos 7x)=(1/2)(sin x * sin (6x))
So, the equivalent of the give identity is:
(1/2)(cos 5x+ cos 3x)=(1/2)(cos 5x - cos 7x)
(cos 5x+ cos 3x)=(cos 5x - cos 7x)
cos 3x=-cos 7x
cos3x+cos7x=0
Now, we'll write the sum as a product, in this way using the properties of a product of 2 factors which is equal to 0.
2cos[(3x+7x)/2]cos[(3x-7x)/2]=0
2cos(5x)cos(2x)=0
cos 5x=0
5x= arccos0+2kpi
5x=pi/2+2kpi
For k=0, x=pi/10, (x=180/10=18 degrees)
For k=1, 5x=2pi-pi/2
5x=3pi/2
x=3pi/10(x=3*18=54 degrees, first quadrant)
cos 2x=0
2x=arccos0 + 2kpi
2x=pi/2+2kpi
For k=0, x=pi/4(x=45 degrees)
For k=1, 2x=2pi-pi/2,
x=pi-pi/4=3pi/4(x=3*45=135, second quadrant)
No comments:
Post a Comment