(sinx)^4+(cosx)^4 = 1
The soltion is obvious but a procedure is as below:
s^4+(1-s^2)^2 = 1, where s = sinx. Also (sinx)^2+(cosx)^2 = 1 is a trigonometric identity for all x. So, (cosx)^4 = [(cosx)^2]^2 = (1-s^2)^2. Therefore,
s^4+1-2s^2+s^4=1
2s^4-2s^2=0
s^4-s^2 = 0
s^2(s^2-1)=0
s^2 = 0 or s^2 = 1
s=0 or s=1 or s=-1
sinx = 0 or sinx = 1 or sin x= -1
When sinx = o, x = 0 degree or x=180 derees.
When sinx = 1, x= 90 degree
When sinx = -1, x= 270 degree.
No comments:
Post a Comment